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Abstract. In recent years, falling has risen in popularity and caused
many detrimental effects on older adults. Therefore, various machine
learning approaches and datasets have been introduced to construct an
efficient fall detection algorithm for the social community. This paper
studies the fall detection problem based on a large public dataset, namely
the UP-Fall Detection Dataset. This dataset was collected from a dozen
of volunteers using different sensors and two cameras. We propose several
techniques to obtain valuable features from these sensors and cameras
and then construct suitable models for the main problem. The experi-
mental results show that our proposed methods can bypass the state-of-
the-art methods on this dataset in terms of accuracy, precision, recall,
and F1-score.
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1 Introduction

Falling is one of the most common dangers that the elderly usually face during
their daily lives, and the potential of death after falling might increase if they
live alone. As reported by the Center for Diseases and Controls (CDC)*, the
percentage of death after falling in the U.S went up 30% from 2007 to 2016 for
older adults. According to 4, in case we do not find an appropriate way to stop
these rates keep growing, there may be approximately seven deaths per hour by
2030. Among persons having 65 years of age or older, more than one-third of
them fall each year, and remarkably, in half of such cases, the falls are recurrent
[1]. The corresponding risk may double or triple with the occurrence of cognitive
impairment or history of previous falls [2]. Typically, there are various costly
consequences that the fall incident could lead to:

1. Causing serious injuries for the elderly such as, e.g., broken bones (wrist,
arm, ankle, and hip fracture).

* https://www.cdc.gov/homeandrecreationalsafety /falls/adultfalls.html
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2. Causing head injuries with people who are taking certain medicines could
make their situations worse. Furthermore, when fall incidents damage an
elderly’s head, the people need to go to the hospital right away to inspect
for any brain injuries.

3. Causing many people the fear of falling and making them less active. As a
result, they become weaker and have a higher percentage of getting the same
incident again.

Understanding the fearful outcomes that falling leads to, developing a fall
detection system is essential than ever before. In addition, when an incident
occurs, the time that the elderly remaining to lie on the floor after the fall is one
of the critical factors for determining the severity of the fall [3]. Timely detection
of falls can quickly help older people to receive immediate assistance by caregivers
and then reduces the adverse consequences from the incident [4]. Consequently, a
robust fall detection system to monitor the fall and provide alerts or notifications
is necessary to lighten the burden of caregivers and resource-strained health care
systems [5].

This paper aims to investigate the falling detection problem based on a public
dataset, namely UP-Fall Detection dataset, provided by Martinez and colleagues
[6]. This dataset contains sensor data and images collected by various devices
and sensors, including wearable sensors, ambient sensors, and vision devices,
from different healthy young volunteers. They performed six daily activities and
simulated five different types of falls, with three attempts for each activity. The
wearable sensors include an accelerometer, gyroscope, and ambient light sensors.
On the other hand, they used one electroencephalograph (EEG) headset, six
infrared sensors, and two cameras to acquire data. Furthermore, we present an
improved method for the fall detection problem in this dataset and compare
the proposed approach with previous techniques. The experimental results show
that our method could bypass the state-of-the-art techniques and obtain better
accuracy, precision, recall, and F1-score.

2 Related Work

There have been recent works related to the research of building fall detection
systems. For example, Vallabh et al. [7] introduced their fall detection system
using different classifiers, which are: Naive Bayes, K-nearest neighbor, neural
network, and support vector machine. Furthermore, they measured the corre-
sponding performance of these methods based on two well-known datasets (FDD
and URFD). In the experiments, Support Vector Machine achieved the best per-
formance with 93.96% accuracy.

Delgado and colleagues [8] presented a new deep learning-based approach for
the fall detection problem using four datasets recorded under different condi-
tions. They utilized sensor data and subject information (accelerometer device,
sampling rate, sequence length, age of the subjects, etc.) for feature extraction
and obtained more than 98% of accuracy in these datasets. Furthermore, the
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proposed platform could get a low false positive (less than 1.6% on average) and
handle simultaneously two tasks: fall detection and subject identification.

Tsai et al. [9] presented a fall detection system by combining both traditional
and deep neural methods. First, for extracting relevant features for the main
problem, they initialized a skeleton information extraction algorithm that could
transform depth information into skeleton information and extract the important
joints related to fall activity. Then, they pulled seven highlight feature points
and employed deep convolution neural networks to implement the fall detection
algorithm based on the approach. As a result, they could obtain high accuracy
on a popular dataset NTU RGB+D with 99.2% accuracy. One can find more
details at [10, 11].

3 Methodology

This section introduces our approach to the fall detection problem. First, we de-
scribe the feature extraction step with sensor and camera data and then present
various models for the fall detection problem based on features extracted. We
also provide the list of performance metrics used in our experiments.

3.1 UP-Fall Detection dataset

All volunteers set up different devices to collect the UP-Fall Detection dataset,
including wearables, context-aware sensors, and cameras. They collected these
multimodal data at the same time. During the data collection process, these vol-
unteers stayed in a controlled laboratory room, having the same light intensity,
and the context-aware and cameras remained in the same position.

Five Mbientlab MetaSensor wearable sensors were put in the five different
places (the left wrist, below the neck, in the right trouser pocket, in the middle
of the waist (in the belt), and at the left ankle) to collect raw data (the 3-axis ac-
celerometer, the 3-axis gyroscope, and the ambient light value). In addition, each
volunteer used one electroencephalograph (EEG) NeuroSky MindWave headset
to measure the associated EED signals from the head. Six other infrared sensors
were placed as a grid 0.40 m above the room floor to track all changes in inter-
ruption of the optical devices. In addition, the authors installed two Microsoft
LifeCam Cinema cameras at 1.82 meters above the floor for two different views:
lateral view and frontal view (as depicted in Figure 1). Further details can be
found at [6].

3.2 Data Processing

Related to the sensor data, we dropped all duplicate records and removed rows
having missing values. Finally, to combine the sensor data with all images ex-
tracted from a camera, we carefully checked the timestamp information from the
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Table 1. Activities duration in the UP-Fall Detection dataset [6]

Activity ID Description Duration (s)
1 Falling forward using hands 10
2 Falling forward using knees 10
3 Falling backwards 10
4 Falling sideward 10
5 Falling sitting in empty chair 10
6 Walking 60
7 Standing 60
8 Sitting 60
9 Picking up an object 10
10 Jumping 30
11 Laying 60
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Fig. 1. Location of different sensors and camera devices in the UP-Fall Detection
dataset [6]

sensor data and selected the most relevant mapping to associated images. As a
result, the total number of samples for sensor data is 258,113 with 28 different
attributes and one label. When extracting useful features for sensor data, we
applied the standardization technique for the sensor dataset by normalizing the
mean of attributes to zero and the corresponding standard deviation to one.

We ensured all images extracted from Camera 1 and Camera 2 could have the
same size and sorting order for the camera data by removing redundant photos
of both cameras. We also carefully reviewed the timestamp of both images and
sensor data for the most relevant mapping. We scaled each image by dividing
each pixel’s value to 255 to guarantee those entire photos’ pixels were in the
range [0,1].

3.3 Feature extraction and modeling

As described in the previous section, there are two data sources collected in the
UP-Fall Detection dataset, sensor and camera data. We employ different feature
extraction steps for these data after doing necessary data processing.
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3.3.1 Sensor data With a given list of 28 attributes from the sensor data,
we present the following neural network only using sensor features for the fall
detection algorithm: one fully connected layer of 2000 units with Relu activation
function, one batch normalization layer, one fully connected layer of 600 units
using the Relu activation function, another batch normalization layer, a dropout
layer of the rate 0.2, and the final Softmax layer for the output size as 12. One
can see more detailed in Figure 2.

Dense BatchMorm Dense BatchNorm Dropout Softmax
Input
S—
2000 600 0.2 12

Fig. 2. Our proposed neural network for the fall detection algorithm using Sensor data.

Besides using the proposed neural network above, we also consider two other
techniques to create a suitable fall detection algorithm using only sensor data:
XGBoost and CatBoost.

XGBoost is an optimized gradient tree boosting system that enables the
design of decision trees in a sequential form [12]. Moreover, this algorithm can
compute relevant calculations relatively faster in all computing environments.
As a result, XGBoost is widely used for its performance in modeling newer
attributes and classification of labels.[13].

At the same time, CatBoost is a strong gradient boosting machine learning
technique that achieves state-of-the-art results in various practical tasks. Despite
the original aim of designing this algorithm is to deal with categorical features,
it is still plausible to run CatBoost over a dataset with continuous features [14].
We will show the corresponding results in our experiments.

Table 2. Parameters of 2 ML models

Models Parameters
objective="multi:softprob”,
learning rate = 0.5,

XGBoost random state = 42,
use label encoder = False,
# of estimators = 100
# of estimators = 500,

CatBoost random seed = 42,
learning rate = 0.25,
max depth = 12
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3.3.2 Camera data We employed convolutional neural networks (CNNs) to
extract features from camera data. It is worth noting that CNN has been per-
forming outstanding results for understanding contents presented in an image
better and achieving state-of-the-art results in different applications, including
image recognition, segmentation, detection, and retrieval [15].

Remarkably, there are two cameras installed in the UP-Fall Detection dataset:
Camera 1 and Camera 2. As a result, we consider three different cases for con-
structing an appropriate fall detection model for the main problem.

For only using Camera 1 or Camera 2, we selected the input size of images
collected as (32,32). Then, we pushed the input data to the same CNN archi-
tecture having the following layers: a two-dimensional convolutional layer with
16 filters of size (3,3), one batch normalization layer, one Max-pooling layer of
size (2,2), one Flatten layer, a fully-connected layer of 200 units, one Dropout
layer of the rate 0.2, and the final Softmax layer with 12-dimensional output.
We depicted this CNN in Figure 3.

Conv2D BatchNorm MaxPool2D Flatten Dense Dropout Softmax

Input

Fig. 3. Our proposed CNN for constructing a suitable fall detection model only using
one camera (Camera 1 or Camera 2).

Finally, we study the remaining case when combining images collected from
Camera 1 and Camera 2. Typically, we extracted features from each camera for
given input data. As a result, the input data from Camera 1 and Camera 2
shifted through the same CNN architecture: one two-dimensional convolutional
later with the number of filters as 15 and the kernel size as (3,3), one Max
pooling layer with the pool size as (2,2), one batch normalization later, and
one flattened layer. After this step, all two features extracted from Camera 1
and Camera 2 could be concatenated and then go through two consecutive fully-
connected layers with the corresponding number of units as 400 and 200 using the
Relu activation function. We used another dropout after that for regularization,
and this could help us reduce the percentage of overfitting problems during the
training step. Subsequently, we put the computed vector into the final layer using
the Softmax activation function to obtain the 12-dimensional output. One can
see more details in Figure 4.

3.3.3 Fusion data For fusing multimodal data from both sensors and cam-
eras, we designed the following neural network architecture. First, two input
data from two cameras were passed through the same CNN architectures as
mentioned above. Then, on the other hand, sensor data are passed through one
convolutional 1D layer with ten filters and the size of the kernel as three, and
the Relu activation function. Next, these computed vectors from sensors and two
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Fig. 4. Concatenated CNN model for Cam 1 + Cam 2
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Fig. 5. Our proposed deep neural network using all sensor data and two cameras.

cameras continue passing through one max pooling 1D layer with the pool size
as two, one batch normalization layer, and a flatten layer. Subsequently, these
three flattened layers are concatenated as a final feature vector before going
through two fully connected layers with units 600 and 1200. Next, the dropout
layer with a rate of 0.2 is added for regularization, and the final result can be
computed via a Softmax layer at the end for classifying fall detection. One can
find more information related to this architecture in Figure 5.
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3.4 Performance metrics

For comparing the performance of different approaches, we use the following
metrics in our experiments: accuracy, precision, recall, and F1 scores.

4 Experiments

This paper runs all experiments on a computer with Intel(R) Core (TM) i7-
7700K 4 CPUs running at 4.2GHz with 16GB of RAM and 48GB of virtual
memory. During the processing step, with the help of some essential libraries:
numpy, pandas, cv2, we can work through the operation easily. In the model-
ing procedure, the scikit-learn package provides a powerful tool for us to run
some algorithms like XGBoost and CatBoost. On the other hand, the Tensor-
flow and Keras libraries are crucial tools to train deep learning models. In the
end, the package ModelCheckpoint is utilized to save deep learning models
and joblib for scikit-learn models.

4.1 Data Collection

We used the UP-Fall Detection dataset for all experiments. This dataset was
published by Martinez et al. [6] at the following link®. There are two types of
datasets in this link: Consolidated Dataset and Feature Dataset. We decided
to use the Consolidated Dataset because it is the core dataset, so that further
extractions could be easier.

We concatenate all the CSV files together for the sake of easiness in the
training process. After combining all the files, we get a CSV file with 294,678
samples and 45 features.

All images are converted to gray-scale images and resized to the shape of
(32,32) by the following equation:

Gray = 0.299 x Red 4 0.587 « Green + 0.114 * Blue

4.2 Previous methods

In the previous work proposed by Martinez et al. [6], the authors did not give the
information about a random seed for the dataset to reproduce the result with
their techniques. As a result, we decided to split the dataset into training, test,
and validation sets with the ratio of 60/20/20 and run experiments with our
proposed models for both sensor and camera data. Likewise, the models in the
article [6] are implemented again to compare the performance with our proposed
model. From that, we can find a better fall detection system.

Related to the sensor data, Martinez and colleagues used Random For-
est[16], Support Vector Machines [17], Multi-Layer Perceptron [18], and K-
Nearest Neighbors [19]. One can find more information about in their paper
[6] as well as their hyperparameter configuration in table 2.

® https:/ /sites.google.com /up.edu.mx/har-up
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For using camera data, they implemented one model using a Convolutional
layer with eight filters size 3 x 3, one ReLu activation function, and then one
Max Pooling layer of size 2 x 2. These consecutive layers repeated twice in that
architecture with minor changes in filter sizes of the Convolution layer: 16 in
the second and 32 in the third time. Finally, this model ended with one flatten
layer and a Softmax layer with size 12 for obtaining the final prediction. It is
worth noting that they trained this system using the stochastic gradient descent
algorithm with an initial learning rate of 0.001, regularization coefficient 0.004,
a maximum number of epochs 5, and a mini-batch size of 100. This architecture
can be shown in Figure 6.

Conv2D MaxPool2D Conv2D MaxPool2D Conv2D MaxPool2D  Flatten Softmax

={]Ja{]»

Fig. 6. The CNN model adapted from [6]

4.3 Experimental results

In experiments, we analyze the performance of three different methods: using the
sensor dataset (S), only using two cameras that are Camera 1 (C1) and Camera 2
(C2), a combination of two cameras (C14+C2), and a compound of these features
(S+C1+C2). Then we measure all results using four metrics, including Accuracy,
Precision, Recall, and F1-Score. One can see more details in our experimental
results in Tables 4, 5, and 6.

First, we compare models and techniques on the sensor dataset without using
any Camera information. The experiment shows that three of our algorithms,
including XGBoost, CatBoost, and Multi-Layers Perceptron (MLP), can achieve
exhilarating results in terms of Accuracy, Precision, Recall and F1-Score greater
than 99%. Interestingly, our methods could bypass all techniques that Martinez
et al. [6] which consists of Random Forest, Support Vector Machines, Multi-
Layer Perceptron, and K-Nearest Neighbors. Significantly, in our methods, we
increase the number of layers and units in the MLP model. As a result, the
critical metric, F1-Score, can reach 99.03% with the modified MLP, while the
best result of the previous work barely gained 97.28%. For the approach using
Camera information, we modify the CNN model, proposed by Martinez et al. [6]
by eliminating two Conv2D layers and adding BatchNormalization and Dropout.
Our proposed method reduces the time training and increases the performance
in terms of Accuracy, Precision, Recall higher than 99.1% in Camera 1 and
99.3% in Camera 2. Furthermore, the F1-Score of Camera 1 and Camera 2
can achieve 99.16% and 99.40% respectively. In comparison, model CNN of the
previous author group [6] has the results of F1-Score value in Camera 1 and
Camera 2 are 76.69% and 86.96% in that order. From this result, using multiple
Convolutional layers as the previous work [6] in a consecutive sequence does
not always give good results. One possible reason is that more information can
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Table 3. Parameters of ML models in [6]

Models Parameters
estimators = 10,
min. samples split = 2,
min. samples leaf = 1,
bootstrap = true

Random Forest

c=1.0,
kernel = radical basis function,
Support Vector Machines kernel coefficient = 1/features,

shrinking = true,
tolerance = 0.001
hidden layer size = 100,
Multi-Layer Perceptron activation function = ReLU,
solver = stochastic gradient,
penalty parameter = 0.0001,
batch size = min(200,samples) ,
initial learning rate = 0.001,
shuffle = true,
tolerance = 0.0001 ,
exponential decay (first moment) = 0.9,
exponential decay (second moment) = 0.999,
regularization coefficient = 0.000000001,
max. epochs = 10
neighbors = 5,
k-Nearest Neighbors leaf size = 30,
metric = Euclidean

be lost for each time passing through a Convolutional layer. In this case, using
a convolutional layer is enough to extract information from the input image.
In addition, BatchNormalization layers make the model easier to converge and
overfit in the training set. Finally, adding Dropout classes helps the model avoid
overfitting, thereby providing high performance on the test set.

Interestingly, using both the information of the sensor and two Cameras
can help improve our approach’s performance. In the case of the concatenation
models in Table 6, the results are far better in all metrics that we mentioned
above. At first, we try to combine Camera 1 and Camera 2 to train with this
model, and it gets 99.46% in F1-Score compared to the best model we acquired
with CNN, which is 99.40% F1-Score. Furthermore, it is worth noting that a
training model with the combination of sensors and two Cameras can outperform
using each feature. The corresponding Accuracy, Precision, Recall, and F1-Score
are 99.56%, 99.56%, 99.56%, 99.55%, which is most dominant than the using
Sensor, one Camera, and the combination of two Cameras on each metric.

Table 4. Performance of our proposed models

Data| Model |Accuracy|Precison|Recall|F1-Score
XGBoost| 99.21 99.19 | 99.21 99.20
S |Catboost| 99.05 99.02 | 99.05 99.02
MLP 99.04 99.05 | 99.03 99.03
C1 CNN 99.17 99.24 | 99.12 99.16
C2 CNN 99.39 99.40 | 99.39 99.40
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Table 5. Performance of models of Martinez et al. [6]

Data|Model|Accuracy|Precison|Recall|F1-Score
RF 97.46 97.29 98.46 97.28
SVM 96.96 96.82 | 96.96 96.61
KNN 97.24 97.07 | 97.24 97.05
MLP 90.21 88.36 90.21 88.43
C1 | CNN 78.92 84.80 70.97 76.69
C2 | CNN 88.24 90.32 | 86.13 86.96

Table 6. The performance when combining different features: C1+C2 and S+C1+4C2.

Data Model |Accuracy|Precison|Recall|F1-Score
C1+C2 |Combination| 99.46 99.47 99.46 99.46
S+C1+4C2|Combination| 99.56 99.56 99.56 99.55

5 Conclusion and Future Works

We have proposed a new approach for the fall detection problem by using the
concatenation model. With this methodology, we can combine different kinds of
data and find a new path to improve the model’s performance, which is critical
in developing a fall detection system. The experiments show that fusing both
sensor and camera data can improve performance for the fall detection algorithm
in the UP-Fall Detection dataset.

In the future, we aim to focus more on feature extractions work on this
dataset to have a deeper understanding of falling. In addition, we will also ap-
ply other recent techniques in this data to improve the performance of the fall
detection problem.
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